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Observation: Let f(x, y) be the number of trees below and to the left of (x, y). Then the
number of the trees in the rectangle bounded by t1 and t2 is

f(t1.x, t1.y) + f(t2.x, t2.y) - f(t1.x, t2.y) - f(t1.y, t2.x) + 1

if t1 lies below and to the left of t2 (or vice versa), and a similar formula if not.

1. Trivial algorithm. Loop over all rectangles, and loop over all trees to count those
inside the rectangle.

O(n3)

2. Use dynamic programming to compute f(t1.x, t2.y) for every t1, t2. Then evaluate
all rectangles using the formulae.

O(n2), but also O(n2) memory

3. Place an outer loop t over the trees, representing one corner of a potential
rectangle. To evaluate rectangles with corners at t, one only needs f(t.x, *) and f(*,
t.y). These can be computed with DP as in algorithm (2), and requires only linear
memory.

O(n2)

4. Sort the trees from left to right, and then process them in that order. As each new
tree (say tn) is added, it is inserted into a list of current trees that is sorted
vertically. From this information one can calculate f(t.x, tn.y) and f(tn.x, t.y) for
every t to the left of tn, in linear time. Then one can evaluate all rectangles with
one corner at tn. This ends up being very similar to algorithm (3).

O(n2)

5. Algorithm (1), but with optimised counting. As a pre-process, associate a bitfield
with each tree representing which trees lie below and to the right, and a similar
bitfield for trees below and to the left. The trees inside a given rectangle may be
found as the binary AND of two bitfields. A fast counting mechanism (such as a
16-bit lookup table) will accelerate counting.

O(n3) and O(n2) memory, but with low constant factors



Hermis

An O(n2) algorithm: Let (x0,y0),…,(xn,yn) be the points where (x0,y0)=(0,0) is the starting
point. We will compute A[i,j] and B[i,j] where A[i,j] is the cost to align with the i first
points and end up at (xi,yj) and B[i,j] is the cost to align with the i first points and end up
at (xj,yi). We have

A[i+1,j]=min { A[i,j]+d[xi,x{i+1}], B[i,i+1]+d[yi,yj] }
B[i+1,j]=min { B[i,j]+d[yi,y{i+1}], A[i,i+1]+d[xi,xj] }

The final answer is minj {A[n,j],B[j,n]}

Time O(n2)
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1 Minkowski decomposition

1.1 The setting

Although computing the Minkowski sum is straightforward ([2]), deciding whether a polygon
is the Minkowski sum of 2 polygons is NP-complete.

There is a pseudo-polynomial time algorithm for the latter ([1]), which we now sketch. If the
input is the sequence of N edges, then the input size is O (N(log m + log E)) , where m is the
maximum number of integer points on any edge, and E is the maximum absolute value of
any coordinate defining a primitive edge vector, as defined below. The algorithm in [1] runs
in O(tNm) time, where t = |P ∩ Z

2|.

1.2 Solution of the IOI-04 problem Polygon

We call the input polygon P . Suppose that it consists of N vertices with non-negative
coordinates of the form vi = (xi, yi), 0 ≤ i ≤ N − 1, given in counter-clockwise order.

Definition 1.1 We call a vector v = (a, b) primitive, if gcd (a, b) = 1, where a, b ∈ Z≥0.

Equivalently, v is primitive iff there are no integer points in its interior.

The edges of P are represented by the vectors Ei = vi − vi−1 = (ai, bi), 1 ≤ i ≤ N , where
ai, bi ∈ Z and the indices are taken modulo N . Given an edge (ai, bi), if ni = gcd (ai, bi), then
we consider the corresponding primitive edge ei = ( ai

ni
, bi

ni
). We call the sequence of vectors

{Ei}1≤i≤m = {niei}1≤i≤m edge sequence of the polygon, where ei is a primitive vector.

There is a crucial observations in computing the summands A,B such that P = A + B.

Lemma 1.2 Every primitive edge of P must appear as an edge either of A or of B. If the

edge is not primitive, there is a third possibility: that it is the Minkowski sum of an edge of

A and an edge of B, where these edges are parallel.

Now we can deduce the following fact: A polygon is a summand of P iff its edge sequence is
of the form {kjej}j∈J , where J ⊆ {1, . . . N}, 0 ≤ kj ≤ nj , kj ∈ Z and

∑
j∈J kjej = (0, 0), i.e.

the sum of the vectors that represent its edges is zero.

Below we present algorithms to find summands as required by the problem Polygon. In
computing summand polygons, the chosen algorithm may produce a summand with one
or more negative coordinates. In this case, we must shift both summands to non-negative
coordinates. This is a valid operation, because shifting does not change any polygon.
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1.3 Looking for a segment summand

The polygon has a segment summand iff at least one pair of the (sub)vectors of its edge
sequence has a zero vector sum. Based on this fact, we present 3 algorithms of increasing
speed.

Our algorithms start with finding the primitive vectors for every edge, by performing a GCD
computation (at section 1.6 there are two algorithms for the GCD computation). For polygons
that contain only primitive edges, this step is unnecessary.

Naive First we compute the edges of the polygon. Every edge is of the form

Ei = (xi+1 − xi, yi+1 − yi) = (ai, bi)

where the indices are taken modulo N . Next we compute all the gcd’s of form gcd (ai, bi) and
we form the edge sequence using the primitive vectors as in the preamble. This computation
can be done in O(mN) time, where m = max ni = max gcd (ai, bi).

For every vector in the sequence we compute its sum with every other vector in the sequence.
This can be done in O(m2N2) total time.

Clever We compute the edge sequence as before in O(mN) time. We sort the sequence
with respect to their x−coordinate, in O(mN lg(mN)) time.

For every vector in the sequence we test if another vector in the sequence with the opposite
x−coordinate add to zero. We perform the searching by binary search, since the sequence is
sorted, in O(lg(mN)) time. The total time is O (mN(lg(mN))).

Advanced We compute the edge sequence as before in O(mN) time. We insert the edges
in a hash table, using as key value their x−coordinate. The insertion is performed in O(1).

For every edge in the sequence we search the hash table for another edge with opposite
x−coordinate that add to zero. The search is performed in O(1). The total time is O(mN).

1.4 Looking for a triangle summand

Naive We compute the edge sequence as before in O(mN) time. We can form all the
possible triplets and test if they add to zero. The total time is O(m3N3).

Clever We compute the edge sequence as before in O(mN) time and we sort it with respect
to their x−coordinate in O(mN lg(mN)) time.

We form all the possible sums of two vectors in O(m2N2) time. For every such sum we search,
using binary search in O(lg(mN)), for another vector such that their sum is zero. The total
time is O(m2N2 lg(mN)).
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Advanced We compute the edge sequence as before in O(mN) time and we sort them in
increasing order with respect to their x−coordinate in O(mN lg(mN)) time.

For every edge in the sequence, say k, scan the sequence from the left to find i and from the
right to find j, such that Ek + Ei + Ej = 0. Because of the sorted order we can advance
either i or j according to whether the sum Ek + Ei + Ej is positive or negative. The total
time is O(m2N2).

Alternatively we can insert the vectors in a hash table, using as a key their x−coordinate,
and for every sum of 2 vectors we search for a vector in the hash table, in O(1), such that
the sum of the three is zero. Again the total time is O(m2N2).

1.5 Looking for a quad summand

Naive We compute the edge sequence as before in O(mN) time. We can form all the
possible 4-tuples and test if they add to zero. The total time of the algorithm is O(m4N4).

Clever We compute the edge sequence as before in O(mN) time. We can form all the
possible triplets in O(m3N3). For every triplet we search for a vector such that the sum of
the four is zero.

If we have sorted the edges with respect to their x − coordinate and we do binary searching
then the total time of the algorithm is O(m3N3 lg(mN)).

If we insert the edges in a hash table, using their x−coordinate as key, we perform the search
in O(1) time and so the total time of the algorithm is O(m3N3).

Advanced We compute the edge sequence as before in O(mN) time. We form all the
possible sums of 2 edges, in O(m2N2) time and we insert them in a hash table, using as key
their x−coordinate. For every such sum we search the hash table for a vector such that the
total sum is zero. The total time is O(m2N2).

1.6 Computation of the gcd

We present two algorithms that compute the gcd of two integers a, b. The first algorithm is
the traditional Euclid algorithm, while the second one is the Binary gcd algorithm (see [3] at
chapter 4).

Algorithm 1 Euclid gcd(a, b)

Require: a, b ∈ Z

Ensure: y = gcd (a, b)
if b = 0 then

RETURN a
else

RETURN Euclid gcd(b, a mod b)
end if
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Algorithm 2 Binary gcd(a, b)

Require: a, b ∈ Z

Ensure: y = gcd (a, b)
g = 1
while a is even AND b is even do

a = a/2 (right shift)
b = b/2
g = 2 ∗ g (left shift)

end while

while u > 0 do

if a is even then

a = a/2
else if b is even then

b = b/2
else

t = |a − b|/2
end if

if a < b then

b = t
else

a = t
end if

end while

RETURN g ∗ b
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